7 research outputs found

    RECLAIM: Toward a New Era of Refurbishment and Remanufacturing of Industrial Equipment

    Get PDF
    Refurbishment and remanufacturing are the industrial processes whereby used products or parts that constitute the product are restored. Remanufacturing is the process of restoring the functionality of the product or a part of it to “as-new” quality, whereas refurbishment is the process of restoring the product itself or part of it to “like-new” quality, without being as thorough as remanufacturing. Within this context, the EU-funded project RECLAIM presents a new idea on refurbishment and remanufacturing based on big data analytics, machine learning, predictive analytics, and optimization models using deep learning techniques and digital twin models with the aim of enabling the stakeholders to make informed decisions about whether to remanufacture, upgrade, or repair heavy machinery that is toward its end-of-life. The RECLAIM project additionally provides novel strategies and technologies that enable the reuse of industrial equipment in old, renewed, and new factories, with the goal of saving valuable resources by recycling equipment and using them in a different application, instead of discarding them after use. For instance, RECLAIM provides a simulation engine using digital twin in order to predict maintenance needs and potential faults of large industrial equipment. This simulation engine keeps the virtual twins available to store all available information during the lifetime of a machine, such as maintenance operations, and this information can be used to perform an economic estimation of the machine's refurbishment costs. The RECLAIM project envisages developing new technologies and strategies aligned with the circular economy and in support of a new model for the management of large industrial equipment that approaches the end of its design life. This model aims to reduce substantially the opportunity cost of retaining strategies (both moneywise and resourcewise) by allowing relatively old equipment that faces the prospect of decommissioning to reclaim its functionalities and role in the overall production system

    Towards sustainable manufacturing by enabling optimum selection of life extension strategy for industrial equipment based on cost modelling

    Get PDF
    Sustainable manufacturing is of great importance in today’s world. In manufacturing, keep industrial equipment well-functioning is important because failure of equipment leads to significant financial and production losses. In addition, disposal of such failed equipment is both costly and environmentally unfriendly and does not recover any residual value. This raises the need to adopt methods and means that help extending the life of equipment and reduce waste of material. This paper presents a digital toolkit of cost model to estimate and understand the costs to be incurred when applying life extension strategy for industrial equipment. It is meant to be integrated with other tools and methodologies to enable end-users to perform optimal decision-making regarding which life extension strategy (e.g., remanufacturing, refurbishment, repair) to implement for large industrial equipment that is towards its end-of-life or needs maintenance, taking into account criteria such as cost, machine performance, and energy consumption. The cost model developed integrates a combination of parametric costing and activity-based costing methods to per form cost estimation. It has been implemented in an Excel-based Macro platform. A case study with application scenarios has been conducted to demonstrate the application of the cost model to optimize life extension strategies for industrial equipment. Finally, conclusions on the developed cost model have been reported

    Cost Modelling to Support Optimum Selection of Life Extension Strategy for Industrial Equipment in Smart Manufacturing

    Get PDF
    Industrial equipment/machinery is an important element of manufacturing. They are used for producing objects that people need for everyday use. Therefore, there is a challenge to adopt effective maintenance strategies to keep them well-functioning and well-maintained in production lines. This will save energy and materials and contribute genuinely to the circular economy and creating value. Remanufacturing or refurbishment is one of the strategies to extend life of such industrial equipment. The paper presents an initial framework of cost estimation model based on combination of activity-based costing (ABC) and human expertise to assist the decision-making on best life extension strategy (e.g. remanufacturing, refurbishment, repair) for industrial equipment. Firstly, ABC cost model is developed to calculate cost of life extension strategy to be used as a benchmark strategy. Next, expert opinions are employed to modify data of benchmark strategy, which is then used to estimate costs of other life extension strategies. The developed cost model has been implemented in VBA-based Excel® platform. A case study with application examples has been used to demonstrate the results of the initial cost model developed and its applicability in estimating and analysing cost of applying life extension strategy for industrial equipment. Finally, conclusions on the developed cost model have been reported

    Multi-Step Energy Demand and Generation Forecasting with Confidence Used for Specification-Free Aggregate Demand Optimization

    No full text
    Energy demand and generation are common variables that need to be forecast in recent years, due to the necessity for energy self-consumption via storage and Demand Side Management. This work studies multi-step time series forecasting models for energy with confidence intervals for each time point, accompanied by a demand optimization algorithm, for energy management in partly or completely isolated islands. Particularly, the forecasting is performed via numerous traditional and contemporary machine learning regression models, which receive as input past energy data and weather forecasts. During pre-processing, the historical data are grouped into sets of months and days of week based on clustering models, and a separate regression model is automatically selected for each of them, as well as for each forecasting horizon. Furthermore, the multi-criteria optimization algorithm is implemented for demand scheduling with load shifting, assuming that, at each time point, demand is within its confidence interval resulting from the forecasting algorithm. Both clustering and multiple model training proved to be beneficial to forecasting compared to traditional training. The Normalized Root Mean Square Error of the forecasting models ranged approximately from 0.17 to 0.71, depending on the forecasting difficulty. It also appeared that the optimization algorithm can simultaneously increase renewable penetration and achieve load peak shaving, while also saving consumption cost in one of the tested islands. The global improvement estimation of the optimization algorithm ranged approximately from 5% to 38%, depending on the flexibility of the demand patterns

    DSF Core: Integrated Decision Support for Optimal Scheduling of Lifetime Extension Strategies for Industrial Equipment

    No full text
    This paper proposes a generic algorithm for industries with degrading and/or failing equipment with significant consequences. Based on the specifications and the real-time status of the production line, the algorithm provides decision support to machinery operators and manufacturers about the appropriate lifetime extension strategies to apply, the optimal time-frame for the implementation of each and the relevant machine components. The relevant recommendations of the algorithm are selected by comparing smartly chosen alternatives after simulation-based life cycle evaluation of Key Performance Indicators (KPIs), considering the short-term and long-term impact of decisions on these economic and environmental KPIs. This algorithm requires various inputs, some of which may be calculated by third-party algorithms, so it may be viewed as the ultimate algorithm of an overall Decision Support Framework (DSF). Thus, it is called “DSF Core”. The algorithm was applied successfully to three heterogeneous industrial pilots. The results indicate that compared to the lightest possible corrective strategy application policy, following the optimal preventive strategy application policy proposed by this algorithm can reduce the KPI penalties due to stops (i.e., failures and strategies) and production inefficiency by 30–40%

    DSF Core: Integrated Decision Support for Optimal Scheduling of Lifetime Extension Strategies for Industrial Equipment

    No full text
    This paper proposes a generic algorithm for industries with degrading and/or failing equipment with significant consequences. Based on the specifications and the real-time status of the production line, the algorithm provides decision support to machinery operators and manufacturers about the appropriate lifetime extension strategies to apply, the optimal time-frame for the implementation of each and the relevant machine components. The relevant recommendations of the algorithm are selected by comparing smartly chosen alternatives after simulation-based life cycle evaluation of Key Performance Indicators (KPIs), considering the short-term and long-term impact of decisions on these economic and environmental KPIs. This algorithm requires various inputs, some of which may be calculated by third-party algorithms, so it may be viewed as the ultimate algorithm of an overall Decision Support Framework (DSF). Thus, it is called “DSF Core”. The algorithm was applied successfully to three heterogeneous industrial pilots. The results indicate that compared to the lightest possible corrective strategy application policy, following the optimal preventive strategy application policy proposed by this algorithm can reduce the KPI penalties due to stops (i.e., failures and strategies) and production inefficiency by 30–40%
    corecore